

Applikationsblatt: AM-FM-Meßsender SMDF/SMDA

Meßplatz für Sprechfunkgeräte

Frequenzanzeige, siebenstellig

Hohe Frequenzauflösung (100 Hz oder 10 Hz)

Synchronisation des Meßsenders, nebenwellenfrei

Ohne Verschlechterung des Rauschabstandes Modulationseigenschaften bleiben erhalten

Drucktasten zur Bereichswahl

Schneller Frequenzzugriff

Lineare Frequenzskala

Hohe Skalenauflösung

Wobbeleingang

Wobbelhub 100...600 kHz

Grob- und Feinskala

Kontinuierlich durchdrehbar

Feinverstimmung, in kHz geeicht

Meßartenschalter

Bequemer Wechsel zwischen allen Meßmöglichkeiten bei Empfangs- und Sendeteilmessungen

ANSCHLUSS FUNKGERÄT

HUBMESSER

Frequenzhub, Phasenhub

Modulationsfrequenz-Anzeige automatisch am Zähler Frequenzhubmesser 0...5 kHz, 0...20 kHz Phasenhubmesser 0...2, 0...5 $\Delta f/f_{mod}$

Meßausgang, z.B. für Störhubmessung

5 Veff für Vollausschlag

FREQUENZMESSER

Eing. A 50 Hz...5 MHz, Auflösung 1 Hz oder 10 Hz Eing. B 1 MHz...490 MHz, Aufl. 10 Hz oder 100 Hz

AM/FM-MODULATION

Modulationsfrequenzen SMDF 0,3/0,4/1/3/6 kHz
SMDA 12 Festfrequ. + kontinuierliche Verstimmung
Modulationsausgang

NF-Meßausgang

Modulationsgrad, Hubanzeige
Phasenhub, NF-Millivoltmeter

GENERATORAUSGANG

Geregelte HF-Ausgangsspannung

Kontinuierlich zwischen 0,1 μV und 1 V EMK Einknopfbedienung

LEISTUNGSMESSER

HF-Ausgangsleistung des Funkgerätes

0,01...20 W, erweiterbar bis 100 W

MESSAUFBAU

BESONDERHEITEN

Fehlersuche am HF/ZF/NF-Teil

Selektion, Empfindlichkeit Squelch

Signal/Rauschabstand Eigengeräusch von Empfängern

Messungen von Nebenempfangsstellen

Hohe Frequenzkonstanz Kurze Einlaufzeit Netz- oder Batteriebetrieb Wobbelbetrieb Einbereichsteiler Bequeme Austastung der Modulation

Modulationsanzeigearten: AM, FM umschaltbar Bei SMDA: Phasenmodulation

NF-Millivoltmeter zur Messung externer und interner NF-Spannungen

Modulation Diskriminator Begrenzer Verzerrung an Abstimmkreisen Deemphasis

AM/FM gleichzeitig Hochwertige Modulationseigenschaften Genaue Modulationsanzeige

Modulationsklirrfaktor Störmodulation (AM) Frequenzgang der Modulation

Modulationsgrade ohne Zusatzgeräte meßbar

Ausgang für Klirrfaktormessungen Anzeige am Modulationsteil des Meßsenders

Geringes Eigenrauschen
Taste "Modulation Aus"
Einknopfbedienung der Teiler
Keine Nebenwellen
Geringster Meßgeräteaufwand

Empfangsteilmessungen wie oben ohne Verschlechterung des Rauschabstandes Erhöhte Frequenzgenauigkeit und Konstanz Absolut nebenwellenfrei Messungen an Selektivrufauswertern

Digitale Frequenzanzeige

Hohe Auflösung (100 Hz oder 10 Hz)

Hohe Treffsicherheit, auch für kleinste Kanalraster (20 kHz, 12,5 kHz)

Synchronisation jeder beliebigen Meßfrequenz, wichtig für Langzeit- und Reihenmessungen Hochfrequenzdichter Aufbau des Meßsenders und Zählers

Bis 0,1 µV definiert einstellbare EMK

Elektronische Feinverstimmung

Durchgehender Modulationsfrequenzbereich von 0,27...3,4 und 6...6,4 kHz beim SMDA (Ruffrequenzen)

Einstellfehler der Ruffrequenz $\pm 1\,\mathrm{Hz}$ am Frequenzkontroller

Direkt zählender Frequenzmesser von 1 MHz bis 490 MHz

Auflösung 100 Hz 10 Hz Meßzeit 0,1 s 1 s Empfindlichkeit 10 mV

Eingänge Extern B oder Intern

Frequenzmessung, digital Sendeteil

SMDA oder SMDF + Kontroller

Direkt zählender Frequenzmesser von 50 Hz bis 5 MHz

Auflösung 10 Hz 1 Hz
Meßzeit 0,1 s 1 s
Empfindlichkeit 20 mV
Eingang Extern A
NF-Frequenzmessung von Ruffrequenzen

Frequenzmessung, digital NF-Teil Ruffrequenzen

MESSAUFBAU

BESONDERHEITEN

4

Frequenzmessung, digital von 50 Hz bis 490 MHz Abgesetzter Betrieb des Frequenzkontrollers

Zähladapter erlaubt die Benutzung des Frequenzkontrollers als selbständiger 500-MHz-Zähler mit hoher Eingangsempfindlichkeit

Schwebungsfrequenzmessung

Bestückung und Abgleich von Quarzoszillatoren

Vergleichsfrequenz auf 10 Hz genau einstellbar

Frequenzmessung, digital (Abgleich), der Quarzfrequenz-Aufbereitung durch induktive Auskopplung

Kein Schaltungseingriff am Meßobjekt Langwierige Ausbauarbeit entfällt Auswirkungen des Abgleichs (f-Variation) direkt am Frequenzkontroller mit höchster Genauigkeit (10 Hz) sichtbar

Bei U > 100 mV auch Schwebungsfrequenzmessung wie oben möglich

Hub Hubsymmetrie Störhub Modulationsfrequenz wird automatisch am Zähler angezeigt (Ruffrequenzen)

Frequenzhubmessung in den Meßbereichen $0\dots 5/0\dots 20~\text{kHz}$ Phasenhubmessung in den Meßbereichen $0\dots 2/0\dots 5~\Delta f/f_{mod}$ Messung des +/- Hubes

Automatische Anzeige der Modulationsfrequenz Geringer Eigenstörhub < 15 Hz (CCIF-Bewer-

Geringer Eigenstörhub < 15 Hz (CCIF-Bewertung)

Überlastsicherer Meßsenderausgang Frequenzversatz für Hubmessung automatisch bei SMDA

Kreuz- und Intermodulation Nachbarkanalselektion Blocking, gemäß Pflichtenheft

Hoher Meßkomfort bei geringstem Meßgeräteaufwand. Mit einem Frequenzkontroller können zwei Meßsender auf 10 Hz oder 100 Hz genau eingestellt werden

Relaisbetrieb Prüfung des Sende- und Empfangsteils

Gemessen wird Frequenz, Hub, Leistung, Empfängerempfindlichkeit, Squelch

Das Verzweigungsstück ist vor der Sendeleistung geschützt (20 dB intern vorgeschaltet)

Schmalbandige Wobbelmessung von Quarzfiltern in Verbindung mit dem Polyskop SWOB III

Hohe Stabilität und Genauigkeit der Mittenfrequenz

Kleinster Eigenstörhub

Handdurchstimmung des Wobbelvorgangs bei gleichzeitiger Frequenzanzeige am Kontroller: Flankensteilheit und Bandbreite der Filterkurve lassen sich auf \pm 10 Hz genau bestimmen

Besonders hohe Dynamik (110 dB)

Für Quarzfilter mit extrem hoher Dämpfung und Flankensteilheit

Ausführliche Beschreibung der Messung siehe "Neues von Rohde & Schwarz" Heft 44, Seite 25 bis 29

Nachbarkanalabstrahlung im Frequenzbereich 25...500 MHz in Verbindung mit dem Analyskop EZF

20 dB Übersteuerung des Vorumsetzers ohne Verzerrungen und Begrenzung möglich, dadurch Dynamik > 90 dB

Gleichzeitige Messung von: Leistung + Hub oder Frequenz in Verbindung mit dem UHF-Wattmeter und Anpassungszeiger NAU

Vorteil bei der Abgleich-Arbeit:

Gleichzeitiges Ablesen von Leistung, Frequenz und Hub. Beispielsweise kann der Einfluß des Frequenzabgleichs auf die Ausgangsleistung beobachtet werden

Leistung (NAU): Meßbereich 50 mW ... 31,6 W reflexionsfrei. Lin-Skala

Hub: Eigenstörhub < 15 Hz

Frequenz: Auflösung 100 oder 10 Hz

Empfohlenes Zubehör: Vierfach-Verzweigungsstück, 50 Ω, Id. Nr. 201.4018-03 für die Interkanalmodulationsmessung nach EIA (Dreisendermethode) · Doppelwinkelschalter SNB 40 011 (auf N-Buchsen umrüstbar) · Verzweigungsstück Id. Nr. 100.5203.03 · UHF-Leistungsdämpfungsglieder RBU Id. Nr. 100.8654.05 bzw. RBU Id. Nr. 100.8654.15 zur Erweiterung des Leistungsmeßbereichs auf 40 W bzw. 100 W (auf N-Buchsen umrüstbar) · Zähladapter zum Frequenzkontroller Id. Nr. 100.8131.02 zur Verwendung des Frequenzkontrollers als selbständiger 500-MHz-Zähler · Verbindungsteilesatz zur Verbindung von zwei Geräten Id. Nr. 082.5476.02 · Auskoppelkopf zum SMDF/SMDA Id. Nr. 124.7558.50 zur Einspeisung von HF-Signalen in eine Meßschaltung

Empfohlene Zusatzgeräte: NF-Voltmeter UVN Id. Nr. 100.0160.02 · Wobbelmeßplatz Polyskop SWOB III Id. Nr. 100.5349.92, Einschübe: Anzeigeverstärker Lin/Log .4, X-Ablenkung .07, Horizontale Maßlinien .05 · Impedanzwobbler ZWA Id. Nr. 100.3130.50 · Analyskop EZF Id. Nr. 100.8831.5, mit Vorumsetzer · UHF-Wattmeter und Anpassungszeiger NAU Id. Nr. 100.2779... · DC/AC-Wandler (Firma Schroff, Karlsruhe) 12 V_: TW 3046, 24 V_: TW 3048 · Normalfrequenzempfänger XKD Id. Nr. 100.5678.03 zum Nacheichen des Steuerquarzes · Programmierbarer Synthesizer SSN 0,01...1,2 MHz Id. Nr. 204.8014.52

the control of the co	and the contract of the contra	
AM-FM-MESSENDER	SMDA	SMDF
Frequenzbereich/-Auflösung der Frequenzanzeige	 . 0,4484 MHz/10 Hz oder 100 Hz	0,4227 MHz, 404490 MHz/10 Hz oder 100 Hz
Frequenzinkonstanz, synchronisiert	 . 2 · 10 ⁻⁷ /h und °C	2 · 10 ⁻⁷ /h und °C
Rauschabstand pro 1 Hz Meßbandbreite	 $>$ 120 dB (typ. 130 dB) im A	Abstand ≧ 20 kHz vom Träger
Eigenstörbub	 < 10 Hz (typ. 3 Hz) bewertet na	ch CCIF (0,33 kHz Bandbreite)
HF-Ausgangs-EMK	 einstellbar zwischen 0,1 μ V und 1	V (0140 dB V EMK) $R_i = 50 \Omega$
Frequenz-Modulation		$0\dots50~\mathrm{kHz}$ Hub (k $<$ 1 $^{\circ}/_{\circ}$ bei Hub 4 kHz)
Amplituden-Modulation		$090^{\circ}/_{\circ}$ (k $<$ 5 $^{\circ}/_{\circ}$ bei m $=$ 80 $^{\circ}/_{\circ}$)
Modulationsgenerator		$0,3/0,4/1/3/6$ kHz $\pm1,5^{\circ}/_{\circ},0\ldots1$ V
	kontin. Verstimmung 0,273,4 kHz/66,4 kHz	
Anzeigebereich des Modulationsinstrumentes	 . 1/4/10/40/100 kHz; Δ f/f $_{ m mod}$; $^{ m 0/o}$ und $ imes$ 10 mV	3/10/30/100 kHz; $%$ und $ imes10$ mV
Eingänge/Ausgänge		Modulationsgenerator; NF-Millivoltmeter
EDECHENIZMECCED		

FREQUENZMESSER

Anzeige siebenstellig digital	Frequenzbereich	Empfindlichkeit	max. zul. Pegel	Auflösung der Anzeige	Eingangsimpedanz
Eingang Extern A	50 Hz 5 MHz	20 mV	10 V	1 Hz oder 10 Hz	50 kΩ
Eingang Extern B	1 490 MHz	0,3 V	3 V	10 Hz oder 100 Hz	Leerlauf
Eingang Intern	0,4 490 MHz	10 mV	80 mV	10 Hz oder 100 Hz	50·kΩ

HUBMESSER

Meßbereich für positiven und negativen Hub	FM 5 kHz und 20 kHz; ϕ M: 2 und 5
Fehlergrenzen	\pm (1,5% +1,5% v. E.) Symmetriefehler der Anzeige \pm 1,5%
Eigenstörhub	, <15 Hz, bewertet nach CCIF

LEISTUNGSMESSER

Meßbereiche im	F	req	ue	nzt	er	eicl	h 1	0.	5	00	MF	łz				0,01	0,2/0,12/120 W
Fehlergrenzen																	\pm (6 % v. M. \pm 1,5 v. E.)
Meßumschalter													für	Sen	ıde	- und	Empfangsteilmessung

1

Aufsätze: Meyer-Marc, G.; Ramundt, H.E.; Bruckner, R.: AM-FM-Meßsender SMDF und SMDA für 0,4 bis 490 MHz. Neues von Rohde & Schwarz 8 (1968) Nr. 33, S. 9–13 · Frühauf, T.: Der Frequenzkontroller in Kombination mit den Meßsendern SMDF und SMDA. Neues von Rohde & Schwarz 9 (1969) Nr. 35, S. 11–13 · Klier, H.: Sprechfunkgeräte-Service bei der Polizei. Neues von Rohde & Schwarz (1971) Nr. 52, S. 5–7 · Frühauf, T.: Programmierbarer NF-Synthesizer SSN. Neues von Rohde & Schwarz (1971) Nr. 51, S. 13–17 · Ramundt, H.E.: Blocking-Messungen an Sprechfunkgeräten. Neues von Rohde & Schwarz (1971) Nr. 46, S. 34–35 · Ramundt, H.E.; Bruckner, R.: Messungen an Sprechfunkgeräten. Sonderdruck aus Elektrotechnik 52 (1970) Nr. 22, S. 18–20.

Printed in West Germany Anderungen vorbehalten 472 d-1